The Ethics of Technology and Al: A Framework for a Human-Centered Future

Introduction: The Philosophical Lens on a Technological Age

The rapid proliferation of digital technologies has introduced an era of unprecedented opportunity and profound ethical complexity. To navigate this new landscape, it is essential to move beyond reactive, piecemeal solutions and engage in a systematic, philosophical inquiry. The field of technoethics, which encompasses a wide range of ethical, social, and legal issues related to the role of technology in society, provides a crucial starting point for this endeavor.¹

A deep understanding of technology's ethical dimensions requires a historical perspective. Philosophical discourse on the nature of technology dates back to the very origins of Western philosophy. The Greek term techne ($\tau \acute{\epsilon} \chi v \eta$), from which "technology" is derived, referred to art or craft knowledge and was often viewed as an imitation of nature, a perspective endorsed by ancient philosophers like Heraclitus and Democritus. This view persisted through medieval scholastic philosophy, which largely upheld the traditional understanding of technology. A significant shift occurred with the work of Francis Bacon, whose utopian vision in

New Atlantis (1627) posited that technology and natural philosophy could be harnessed to extend human power over nature for the betterment of society.² This optimistic worldview, however, has been challenged by modern philosophers such as Martin Heidegger and Jacques Ellul, who viewed modern technology as a monolithic, deterministic force driven by its own logic of efficiency rather than the welfare of humanity or the integrity of the biosphere.² These contrasting historical perspectives underscore a foundational tension in the philosophy of technology: Is technology a neutral tool for human use, or does it possess an inherent, and potentially dangerous, essence that shapes human society?

To address the contemporary ethical dilemmas arising from this tension, three foundational philosophical frameworks provide an indispensable analytical toolkit: utilitarianism,

deontology, and virtue ethics.³ Each offers a distinct lens for evaluating the morality of technological development and application.

Utilitarianism is a consequentialist approach that judges the morality of an action based on its outcomes, seeking to produce the greatest good or well-being for the greatest number of people.³ In the context of technology, a utilitarian analysis would focus on quantifiable outcomes, such as efficiency gains, error reduction rates, or public safety improvements, and might justify actions that benefit the majority even if they result in harm to a minority.³

In contrast, deontology is a rule-based framework that emphasizes the inherent rightness or wrongness of actions, regardless of their consequences.³ A deontological approach to technology would focus on adherence to moral duties and rules, such as Kant's Categorical Imperative, which states that one should act only according to rules that could become universal laws.³ This framework provides clear moral guidelines and strong protection for individual rights, such as privacy and autonomy, but can struggle with complex situations where duties conflict.³

Finally, virtue ethics shifts the focus from actions and consequences to the moral character of the actor.³ It emphasizes the cultivation of virtuous traits—such as wisdom, justice, and fairness—in the individuals and organizations that create and deploy technology.³ While virtue ethics may lack clear decision-making procedures for specific dilemmas, it provides a crucial, long-term perspective on the ethical development of the field and the moral motivations behind technological innovation.³

No single one of these ethical frameworks is sufficient on its own to address the complex challenges of modern technology. A purely utilitarian approach could justify harmful actions to minorities, such as widespread surveillance for public safety, a clear violation of individual privacy rights under a deontological framework.³ At the same time, a strict deontological adherence to rules may fail to account for the nuanced impacts of a system on society.³ The analysis throughout this report will demonstrate that a holistic, integrated approach is required, wherein utilitarian considerations guide impact assessments, deontological rules provide ethical boundaries to protect rights, and virtue ethics informs the long-term character development of the technology and its creators.³ This synthesis provides a robust intellectual foundation for navigating the ethical frontiers of the digital age.

Framework	Core Principle	Key Question	Application to Al
Utilitarianism	Maximizing well-being	What action produces the greatest good for	Justifying surveillance for public safety,

		the greatest number?	focusing on efficiency and error reduction ³
Deontology	Duty and moral rules	What are my moral obligations or duties?	Respecting human autonomy via informed consent and protecting privacy rights in data collection ³
Virtue Ethics	Character and moral excellence	What would a virtuous professional or system do?	Implementing fairness and non-bias in machine learning models and promoting transparency ³
Table 1: Foundational Ethical Frameworks Applied to Technology			

Chapter 1: The New Moral Frontiers of Artificial Intelligence

Artificial intelligence represents a new moral frontier, challenging societies to grapple with fundamental questions of fairness, transparency, and accountability. The application of AI across virtually every sector of life—from hiring and healthcare to law enforcement—demands a rigorous examination of its inherent ethical risks.

Algorithmic Bias and Fairness

A central ethical concern is the pervasive issue of algorithmic bias. Al is particularly vulnerable to this problem because its algorithms are created and trained on historical data, which often contains deeply embedded societal and historical biases. The problem is not merely a technical one of flawed programming; it is a socio-political issue that institutionalizes and amplifies existing discrimination, creating a systemic feedback loop. This bias can originate at multiple stages of the Al lifecycle: during data collection, when the data is not representative of the real-world population; in data labeling, where human annotators can introduce subjective biases; in model training, where an imbalanced dataset or architecture can favor majority groups; and even after deployment, when the system is not continuously monitored for emerging biases.

Numerous real-world examples illustrate the profound impact of this bias:

- Hiring: Amazon's AI recruiting tool was abandoned after it was found to discriminate
 against women.⁶ The AI had learned from historical hiring data that male candidates were
 preferred and began penalizing resumes that included the word "women's," such as
 "women's chess club".⁸ The system did not simply replicate the bias but automated and
 institutionalized it, making the discrimination more efficient and difficult to challenge.
- Healthcare: A risk-prediction algorithm used on over 200 million United States citizens
 was found to favor white patients over Black patients.⁶ The system used past healthcare
 spending as a proxy for medical need, which was a faulty interpretation of historical data
 where income and race are highly correlated.⁶ This led to inaccurate predictions and
 resulted in Black patients being less likely to receive needed medical care.⁶
- Justice System: The COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) algorithm, used in the United States justice system to predict the likelihood of a defendant reoffending, was found to incorrectly label Black defendants as high-risk at a higher rate than white defendants.⁶
- Facial Recognition: Facial recognition technology (FRT) exhibits high misidentification rates, particularly for individuals with darker skin tones, leading to discriminatory outcomes.⁷ One study showed that certain facial recognition systems misidentified darker-skinned women at a rate up to 35%, while the error rate for lighter-skinned men was below 1%.⁶ This inaccuracy can have severe consequences, as demonstrated by the case of a Black man in Detroit who was falsely arrested after FRT was used to identify a thief.⁹ The Al's decision, based on biased inputs, creates a new, biased output, which could be used as training data for future systems, creating a perpetual cycle of discrimination.

Case Study	Type of Bias	Ethical Violation
Amazon Recruiting Tool ⁶	Gender bias	Discrimination and denial of opportunity (Justice)
Healthcare Risk Algorithm ⁶	Racial bias (proxy metrics)	Unfair health outcomes and perpetuation of inequality (Justice)
COMPAS Algorithm ⁶	Racial bias (sentencing)	Unfair outcomes and reinforcement of systemic bias (Justice)
Facial Recognition Technology ⁶	Racial/Gender bias (facial identification)	False arrests, privacy violations, and exacerbating existing discrimination (Justice, Deontology)
Table 2: Key Al Bias Case Studies		

The Black Box Problem: Transparency and Accountability

The increasing complexity of AI systems has created what is known as the "black box" problem. ¹⁰ It is a practical and ethical issue where the sophisticated nature of these models makes their decision-making processes impossible for humans to interpret or explain. ¹⁰ This opaqueness presents significant challenges for regulation, management, and building public trust. ¹⁰

To address this issue, it is crucial to differentiate between three related, yet distinct, concepts:

• **Transparency:** This is the broadest concept, providing a window into the entire AI system. This is the broadest concept, providing a window into the entire AI system. It involves documenting and sharing the algorithm's logic, the data inputs used for training, and the methods for evaluation and validation. Transparency allows stakeholders to assess the model's predictive accuracy, fairness, and biases, and it is

- considered essential for responsible AI.¹⁰
- Explainability (XAI): This focuses on explaining how a model arrived at a specific result. 10 It involves providing easy-to-understand explanations for an AI system's decisions and actions, which builds trust with users by giving them a clear understanding of the process. 11
- Interpretability: This refers to making the *overall* AI process understandable to a human.¹⁰ It provides meaningful information about the underlying logic and anticipated consequences of the system, enabling a person to predict the outcome of the AI's decision-making process.¹⁰

The lack of transparency and explainability creates a profound accountability issue. When a biased or flawed AI system causes harm, it is difficult to determine who is responsible.⁶ The responsibility is often shared among developers, companies, and users, without a clear legal framework to assign blame.⁶ This issue is further compounded by the black box nature of the systems, which makes it challenging to audit them for bias or challenge their decisions.⁶

The Ethical Cost of Automation

The transformative power of AI extends beyond algorithmic decisions to the very structure of the labor market. The potential for AI-driven automation to displace human workers is a pressing ethical concern, with estimates suggesting that up to 800 million jobs globally could be affected by 2030. This displacement is not limited to low-skill jobs; even roles in sectors like finance, healthcare, and legal services are at risk. 13

The societal impacts of this automation are multifaceted:

- Widening Economic Inequality: As AI automates jobs, the wealth generated from increased productivity is often concentrated with those who own or control the technology, exacerbating existing economic inequalities.¹³ This can lead to a polarized labor market, with a shrinking middle class and a divide between high-paying, high-skill jobs and low-paying, non-automatable jobs.¹³
- **Social Disruption:** Job displacement can cause the decline of entire industries that sustain communities, leading to social disruption and the erosion of the social fabric.¹³
- Mental Health and Well-being: The loss of employment can have significant psychological effects, including anxiety, depression, and a diminished sense of self-worth.¹³ The fear of job insecurity and the reality of displacement can lead to widespread mental health issues.¹³
- The "Ghost Work" Economy: The advancement of AI has also created new forms of employment that raise ethical concerns about job quality.¹⁵ These low-paying, repetitive

jobs, often called "ghost work," are essential for training AI systems but are hidden from the AI's end consumers. ¹⁵ Workers who perform tasks like scanning and identifying offensive content for media platforms are exposed to psychologically harmful material, which can lead to severe mental health issues. ¹⁵

There is an ethical imperative for companies that profit from AI to consider the broader impact of job displacement and to contribute to the retraining and support of displaced workers. Establishing legal and regulatory frameworks is also essential to govern the ethical use of AI, including issues like transparency and accountability, to ensure a fair and equitable future.

Chapter 2: Data Privacy in a Networked World

In an increasingly digitized society, data has become an immensely valuable commodity, often referred to as "the new gold". The ethical challenge lies in balancing the potential benefits of data use with the fundamental protection of individual rights and societal values. 17

Foundational Principles of Data Ethics

Ethical data management is guided by a set of core principles that uphold responsible and respectful data handling:

- Ownership: The first principle is that an individual has ownership over their personal information. 18 It is considered unethical and unlawful to collect an individual's data without their consent, as it is akin to theft. 18
- Transparency: Data subjects have a right to know how their information is collected, stored, and used.⁵ Organizations have a responsibility to publish their data collection and usage practices so that consumers are aware.⁵ Withholding information or lying about data practices is a form of deception.¹⁸
- **Consent:** Organizations must seek explicit, informed permission from individuals before collecting their personal data. Toonsent should be freely given and revocable, empowering individuals to control their own data and its use. To
- Fairness: Data should be used in ways that do not perpetuate biases, discriminate, or cause harm.¹⁷ Ethical data management strives to ensure equitable treatment for all individuals and to mitigate the risk of bias in data-driven decision-making processes.¹⁷

 Accountability: Information technology experts and organizations must be willing to take responsibility for their actions and the moral implications of their technology.⁵
 Decision-making procedures, particularly when handling sensitive data, should be auditable.¹⁹

Mass Surveillance and the "Chilling Effect"

The commodification of data and the rise of advanced monitoring technologies have enabled a new form of ethical violation: mass surveillance. Mass surveillance involves the indiscriminate monitoring of a large population, which systematically interferes with the right to privacy and the freedoms it enables, such as freedom of expression and the right to protest. This practice relies on the assumption that all information could be useful to address a hypothetical threat, a premise irreconcilable with the fundamental values of democratic societies that seek to limit the information a state knows about its people. 12

The constant threat of monitoring creates an environment of suspicion and threat, which can cause people to alter their behavior, speech, and communication, even if they have not engaged in any wrongdoing. This phenomenon is known as the "chilling effect," and it inhibits the legitimate exercise of people's rights and endangers a society's ability to experiment and evolve. The use of opaque algorithms and automated decision-making further erodes trust and weakens the ability to oversee these systems effectively, as the decision-making process is a "black box" that is difficult to explain.

Legal Frameworks as Ethical Guardrails

As technology has advanced, so too have the legal frameworks designed to codify and enforce ethical obligations. The evolution of privacy law has progressed from a reactive, fragmented approach to more comprehensive, proactive regulations. Early US laws, such as the Fair Credit Reporting Act (FCRA) of 1970 and the Electronic Communications Privacy Act (ECPA) of 1986, laid a foundational but limited groundwork for data protection by regulating credit reporting and electronic communications. ²⁰

In the modern digital age, the **General Data Protection Regulation (GDPR)** stands as a flagship law that has had a global influence on privacy legislation.²⁰ Implemented by the European Union in 2018, the GDPR focuses on protecting people's privacy by promoting a risk-based approach and outlining principles such as data minimization, transparency,

consent, and the right to be forgotten.²⁰ Similarly, the

California Consumer Privacy Act (CCPA), effective from 2020, empowers consumers by granting them greater control over their personal information, including the right to know what data is collected and the right to opt-out of its sale.²⁰ The implementation of the CCPA signaled a significant shift in US privacy regulations, bringing them closer to the standards set by the GDPR.²⁰

Case Study: The Cambridge Analytica Scandal

The Facebook-Cambridge Analytica scandal stands as a pivotal event that exposed the profound ethical failures of the digital age.²⁴ At its core, the scandal was a colossal violation of data ethics, centered on the harvesting and weaponization of personal data without informed consent. The core ethical failure was the harvesting of data from up to 87 million Facebook profiles through a third-party app.²⁴ While a small number of users agreed to take a survey for "academic use," the app also collected data from their friends who had not consented at all.²⁴ This demonstrated a catastrophic failure of both consent and transparency, as Facebook users were not "clear and candid with its users" about the extent to which their data would be used.²⁴

The data was then used by Cambridge Analytica to create detailed psychographic profiles for targeted political advertising.²⁴ The information suggested what type of advertisement would be most effective for a particular person, allowing campaigns to manipulate voter behavior by showing "swing voters" negative graphics or ideas about their opponents.²⁴ This marked a new form of digital manipulation, where data was weaponized to influence democratic processes.

Perhaps the most significant ethical implication was the exposure of the corporate and institutional failure of accountability. Facebook's initial response was to simply demand that the data be deleted without alerting the public.²⁵ The scandal proved that society's ethical norms and legal frameworks were woefully behind technological capabilities.²⁵ Traditional ethical guidelines for human subjects research were designed for a pre-internet world and were not equipped to handle the massive scale of data harvesting from social media.²⁵ This lack of preparation and the absence of robust legal mandates led to a global push for more proactive, rights-based regulations like the GDPR and CCPA, transforming data privacy from a theoretical concern into a central, enforced ethical obligation.²⁰

Chapter 3: Misinformation, Authenticity, and the Battle for Truth

The digital age has democratized the creation and dissemination of information, but it has also given rise to a new and pervasive ethical crisis: the proliferation of false and misleading content. This crisis challenges fundamental assumptions about what constitutes truth and authenticity in a networked world.²⁶

The Anatomy of Deception

To understand the problem, it is essential to distinguish between its component parts:

- Misinformation is false or inaccurate information that is shared unintentionally.²⁷ It is a
 mistake where a person did not know the information was wrong.²⁷
- **Disinformation** is false information that is deliberately intended to mislead.²⁷ It involves the intentional creation of something false and its dissemination.²⁷
- **Malinformation** is real, factual information or pictures that are shared with the intent to harm an individual.²⁷

Technology, particularly social media, has facilitated the spread of these forms of deception.¹⁶ Unlike traditional media, which once relied on a "strenuous validation process," real-time events and news can be disseminated instantly on social media without a fact-checking process.¹⁶

The "Liar's Dividend" and the Erosion of Trust

The ethical crisis has been exacerbated by the emergence of synthetic media, particularly deepfake technology, which uses advanced machine learning techniques to generate hyper-realistic fabricated audio, video, and image content.²⁶ The ability to convincingly simulate real individuals has raised serious ethical concerns related to:

• Identity Misrepresentation: Deepfakes can replicate an individual's face, voice, and mannerisms without their consent, leading to malicious impersonation for disinformation or fraud.²⁹

- **Consent and Autonomy:** One of the most pervasive abuses is non-consensual deepfake pornography, which weaponizes AI against a person's identity and violates their bodily autonomy and psychological safety.²⁹
- **Deception:** Deepfakes are increasingly used in politics and propaganda to influence elections, distort public opinion, and even incite violence.²⁹
- **Financial Fraud:** Voice-cloned fraud is on the rise, with attackers using AI to mimic the voices of executives or family members to trick victims into transferring money or sharing credentials.²⁹

Beyond these tangible harms, the proliferation of deepfakes creates a phenomenon known as the "liar's dividend".²⁹ The existence of deepfake technology, regardless of its use in a specific instance, undermines the credibility of all digital evidence.²⁹ For example, a political leader can dismiss an authentic, scandalous video as a deepfake, and the public has no objective means to verify the truth.²⁹ This third-order ethical crisis erodes trust in journalism, courts, and democratic processes, allowing for the rejection of accountability and fostering a state of epistemological crisis where a shared reality is no longer possible.

The Ethical Imperative to Counter Misinformation

Countering the spread of misinformation requires a multi-stakeholder approach with clear ethical responsibilities.

- **Journalists** serve as the "front-line protection" and have an ethical duty to investigate sources, verify content, and avoid amplifying false claims.²⁷ They should be cautious about the authenticity of videos and use tools like reverse image searches to confirm the veracity of content.²⁷
- Platforms must take responsibility for the content they host. They have a duty to label
 Al-generated content and reduce the algorithmic amplification of unverified videos.²⁹
- Policymakers are introducing laws to penalize malicious misinformation, particularly during elections.²⁹
- The Public must be educated to become more resilient to misinformation. Psychological science can provide valuable insight into why people are susceptible to believing and spreading false information, which can inform the development of effective interventions.²⁸

Chapter 4: The Ethical Web of Social Media

Social media has woven itself into the fabric of modern life, acting as both a connector of people and a catalyst for profound ethical challenges related to content, user well-being, and corporate responsibility.

Content Moderation as a Moral Duty

The central ethical dilemma of social media platforms is the tension between protecting free speech and preventing the spread of harmful content, such as hate speech, misinformation, and violence.³⁰ While many view platforms as neutral conduits for speech, there is a compelling argument that they have a moral responsibility to moderate wrongful speech.³¹ This duty is grounded in several ethical obligations:

- A Defensive Duty: Platforms have a duty to defend others from harm when they can do so at a reasonable cost.³¹
- A Duty to Avoid Complicity: Platforms can be complicit in the wrongful acts of users by providing a space where harmful speech will foreseeably be committed and by amplifying that speech through recommendation algorithms.³¹ Amplification enables harmful content to reach larger audiences and can drown out counter-speech, thereby increasing the harm.³¹

The ethical challenge is not merely about removing harmful content but about the very architecture of the platforms. The debate is no longer just about free speech, but about the ethics of an architecture designed for engagement and potential manipulation.

Social Media and Mental Health

Beyond the content they host, social media platforms present a significant ethical challenge to the mental health and well-being of their users.³² The business models of these platforms are architecturally designed to exploit human psychology for engagement and profit. The use of social media activates the brain's reward center by releasing dopamine, a "feel-good chemical" associated with pleasurable activities.³² The unpredictable nature of "likes" and comments creates a reinforcing feedback loop, similar to a slot machine, that makes the behavior of using the platforms more likely to be repeated.³³

This architecture is linked to several negative psychological impacts, particularly among teens

and young adults:

- Anxiety and Depression: Social media can fuel feelings of dissatisfaction and loneliness by constantly showcasing the "highlight reel" of others' lives, leading to a constant and often unfavorable comparison.³²
- Fear of Missing Out (FOMO): The perpetual sense that others are having more fun or living better lives can compel users to check social media more frequently, further perpetuating the cycle of anxiety.³²
- **Cyberbullying:** Social media platforms serve as hotspots for repeated and intentional harassment, which can severely impact a person's self-esteem and mental health, leaving lasting emotional scars.³²
- Distorted Reality: The widespread use of filters creates "false illusions" and makes it
 difficult for users to distinguish what is real from what is fabricated.³² This can lead to
 body image issues and a desire to look like a filtered version of oneself, a trend noted by
 plastic surgeons seeing an increase in patients who want to look like their filtered
 photos.³³

The ethical responsibility, therefore, extends beyond content moderation to include a duty to redesign the platforms themselves in a way that prioritizes user well-being over engagement metrics. A utilitarian analysis of the social media business model would have to weigh the vast financial profits against the profound and widespread psychological harms it generates. A deontological perspective would question if a business model that intentionally exploits human psychological vulnerabilities upholds a moral duty to "do no harm." Finally, a virtue ethics approach would question the moral character of the companies and developers who continue to build these systems.

Chapter 5: Unresolved Dilemmas and the Future of Governance

As technology continues to advance, it presents complex, forward-looking ethical challenges for which there are no clear consensus or legal precedents. The central question of who is responsible when a highly autonomous system causes harm, the very nature of human identity, and the global divergence of regulatory philosophies are among the most pressing unresolved dilemmas.

The Liability Problem: Autonomous Vehicles

One of the most profound unresolved ethical dilemmas is determining who is legally and morally responsible when an autonomous vehicle (AV) causes an accident.³⁴ The answer often depends on the level of autonomy in the vehicle, creating a complex debate between manufacturer and user liability.³⁴

Arguments for **manufacturer liability** are grounded in a deontological framework that emphasizes the duty to "do no harm." The German national ethics commission for automated driving, for example, states that when the driver cannot control the car in all situations, accountability shifts to the manufacturer.³⁴ This position is supported by companies like Volvo, which have promised to accept all liability when their cars are in autonomous mode, as it would incentivize manufacturers to create safer systems and encourage public adoption of the technology.³⁴

Arguments for **driver liability**, however, have been supported by recent legal cases involving semi-autonomous vehicles. The 2020 lawsuit involving Tesla's "Autopilot" feature found the driver at fault for overestimating the system's capabilities and failing to follow the operating manual.³⁴ The case highlighted a new type of human error—overestimation of the autonomous functions—and led to the conclusion that until full vehicular automation is achieved, driver liability should be the norm.³⁴

The **Moral Machine** experiment, an online platform developed by MIT, vividly illustrates the complexity of this debate by presenting a modern variation of the trolley problem.³⁶
Participants are asked to choose the outcome of an accident where an AV must make a choice, such as killing two passengers or five pedestrians.³⁷ The results of this large-scale experiment, which collected data from over 2.3 million people, revealed that while some moral preferences are universal—such as sparing humans over animals and more lives over fewer—there are significant cross-cultural differences.³⁹ For example, in East Asian countries, the preference for sparing the young over the elderly was less pronounced, which can be attributed to cultural values of respect for older people.³⁷ These findings reveal a fundamental conflict between a globally unified, utilitarian approach to AI ethics and the cultural relativism of moral values. A manufacturer cannot program a single, globally acceptable algorithm for an AV to follow in a dilemma, as a choice that is morally acceptable in one culture may be a violation of deeply held values in another.

Neurotechnology and Human Identity

A more futuristic but equally pressing ethical dilemma is presented by the emergence of

neurotechnology and Brain-Computer Interfaces (BCIs).⁴¹ This technology, which can "read" and "write" brain activity, raises profound ethical questions about the very nature of human identity and what it means to be a person.⁴²

The ethical challenges of neurotechnology include:

- **Mental Privacy:** BCIs can collect brain data, which is a person's most intimate and private information. ⁴² This raises alarming questions about surveillance, particularly if companies use neural data for marketing to influence consumer behavior. ⁴²
- Personal Identity and Cognitive Liberty: The connection of brains to computers and the use of algorithms to assist in decision-making can dilute a person's personal identity and free will.⁴² The challenge is to preserve an individual's control over decision-inducing technology.⁴²
- Social Inequalities: If access to advanced neurotechnology is limited to the wealthy, it could exacerbate existing social inequalities and create a gap between social groups on a global scale. 42

However, the ethical debate is not one-sided. BCIs also offer a profound therapeutic benefit by restoring communicative agency to individuals with severe disabilities, such as those with complete locked-in syndrome. From this perspective, BCIs are not merely therapeutic tools but "infrastructures of moral inclusion" that generate an ethical duty for societies to maintain and protect communicative capacity where feasible. The ethical dilemma of neurotechnology, therefore, is whether its potential to restore human agency outweighs the profound risks to privacy, autonomy, and identity.

A Diverging Regulatory Landscape

The ethical challenges posed by these emerging technologies have spurred a global conversation on governance, but the world's most influential jurisdictions have adopted starkly different approaches.⁴³

Jurisdiction	Core Philosophy	Key Laws/Frameworks	Primary Goals
EU	Risk-based and legally binding	EU AI Act, GDPR, Digital Services Act	Protect fundamental rights, safety, and human

			oversight ⁴³
US	Fragmented and voluntary	NIST AI Risk Management Framework, AI Bill of Rights	Foster innovation, minimize regulatory burdens, and rely on voluntary industry standards
China	State-centric and enforceable	Algorithmic Recommendation Provisions, Generative Al Measures	Ensure national security, social stability, and ideological control
Table 3: Global Approaches to Al Governance			

- The European Union (EU) has taken the most comprehensive and legally binding approach with its EU AI Act. 43 This regulation employs a four-tiered, risk-based framework that prohibits AI systems deemed an "unacceptable risk," such as social scoring, and imposes strict legal requirements on "high-risk" systems used in critical infrastructure, education, and employment. 43 This approach is prescriptive and aims to embed ethical principles like human oversight, data quality, and transparency by design. 43
- The United States (US) has adopted a more fragmented, sector-specific approach that relies primarily on voluntary guidelines and frameworks.⁴³ Frameworks like the National Institute of Standards and Technologies (NIST) AI Risk Management Framework (RMF) and the Biden administration's Blueprint for an AI Bill of Rights are non-binding and lack legal enforceability.⁴³ This strategy aims to foster innovation by minimizing regulatory burdens, but it can lead to an uneven development of policies across federal agencies.⁴⁵
- China has adopted a state-centric, top-down, and enforceable regulatory paradigm.⁴⁶ Its governance model prioritizes national security, social stability, and ideological control, with legally binding regulations on specific use cases like algorithmic recommendations and generative AI.⁴⁶ This approach allows for rapid implementation and clarity but is criticized for its lack of human rights-based considerations and for normalizing the use of advanced algorithms in surveillance operations to maintain authoritarian control.⁴⁶

The divergence of these global strategies is not just a matter of political philosophy but a reflection of deep-seated cultural and societal values. The cultural variations revealed by the Moral Machine experiment provide a concrete, data-driven explanation for the difficulty in achieving a unified global framework. The tension between the EU's rights-based approach, the US's innovation-focused model, and China's control-oriented paradigm makes a truly international consensus a monumental task.

Conclusion: Toward a Human-Centered Future

The ethical challenges of technology and artificial intelligence are not isolated problems but deeply interconnected issues that demand a holistic and proactive response. As demonstrated throughout this report, algorithmic bias is not merely a technical flaw; it is a socio-political problem that can institutionalize and automate historical discrimination. The opacity of AI systems, or the "black box" problem, complicates accountability and erodes public trust, making it difficult to challenge biased outcomes. Furthermore, the weaponization of data and the erosion of truth are made possible by the psychological architecture of social media, which is often designed to exploit human vulnerabilities for profit. 33

The report's analysis indicates that a reactive approach—waiting for harm to occur before legislating—is no longer tenable. The lessons learned from the Cambridge Analytica scandal ²⁴, the "chilling effect" of mass surveillance ¹², and the "liar's dividend" created by deepfakes ²⁹ all point to the urgent need for a proactive and preventative ethical framework. Technology develops at a speed that outpaces traditional governance, and its harms can become widespread and systemic before they are fully understood.

The path forward requires a collaborative, multi-stakeholder model. This model necessitates a shared responsibility that goes beyond a single entity or government.

- Policymakers must create robust, adaptive, and internationally cooperative legal frameworks that are capable of addressing the speed and complexity of technological change. The EU's risk-based approach provides a compelling model for regulating high-stakes AI applications while fostering innovation in lower-risk domains.⁴³
- **Corporations** must move beyond a profit-first mentality and adopt a shared responsibility for governance and ethical design.¹⁶ This includes implementing principles of transparency, accountability, and fairness at every stage of the technology lifecycle.¹⁹
- Professionals have an ethical obligation to adhere to professional codes of conduct, such as the ACM Code of Ethics, which emphasizes contributing to human well-being, avoiding harm, and considering the broader social impact of their work.⁴⁹

 Society must invest in promoting digital literacy and ethical awareness, empowering individuals to critically engage with technology and hold platforms and policymakers accountable.⁵¹

Ultimately, the goal of technology ethics is not to stifle innovation but to guide it toward a human-centered future. This requires embedding ethical considerations at the core of technological design—from data collection and algorithm training to deployment and governance—ensuring that technology serves humanity, rather than the other way around. The challenges are formidable, but a principled, collaborative approach can ensure that the technological revolution upholds fundamental human rights, dignity, and flourishing for all.

Works cited

- 1. Ethics of technology Wikipedia, accessed September 21, 2025, https://en.wikipedia.org/wiki/Ethics of technology
- 2. Philosophy of technology Wikipedia, accessed September 21, 2025, https://en.wikipedia.org/wiki/Philosophy of technology
- 3. Utilitarianism, deontology, and virtue ethics in AI context ... Fiveable, accessed September 21, 2025, https://fiveable.me/artificial-intelligence-and-ethics/unit-2/utilitarianism-deontology-virtue-ethics-ai-context/study-quide/uk9IJyQbhFMiCYkC
- 4. Some technologies are created with values, others have values thrust upon them Leon Furze, accessed September 21, 2025, https://leonfurze.com/2024/04/12/some-technologies-are-created-with-values-others-have-values-thrust-upon-them/
- 5. Understanding the Importance of Ethics in Information Technology Marymount University, accessed September 21, 2025, https://marymount.edu/blog/understanding-the-importance-of-ethics-in-information-technology/
- 6. Bias in Al: Examples and 6 Ways to Fix it Research AlMultiple, accessed September 21, 2025, https://research.aimultiple.com/ai-bias/
- 7. Bias in Al Chapman University, accessed September 21, 2025, https://www.chapman.edu/ai/bias-in-ai.aspx
- 8. Al Ethics: What It Is, Why It Matters, and More Coursera, accessed September 21, 2025, https://www.coursera.org/articles/ai-ethics
- Case Study: Code of Ethics for Facial Recognition Technology ..., accessed September 21, 2025, https://ojs.victoria.ac.nz/wfeess/article/download/7664/6811/10787
- 10. What Is AI Transparency? | IBM, accessed September 21, 2025, https://www.ibm.com/think/topics/ai-transparency
- 11. What is Al transparency? A comprehensive guide Zendesk, accessed September 21, 2025, https://www.zendesk.com/blog/ai-transparency/
- 12. Mass Surveillance | Privacy International, accessed September 21, 2025, https://privacyinternational.org/learn/mass-surveillance
- 13. The Ethical Implications of Al and Job Displacement Sogeti Labs, accessed

- September 21, 2025,
- https://labs.sogeti.com/the-ethical-implications-of-ai-and-job-displacement/
- 14. News: Ethical Considerations in the Development and Deployment ..., accessed September 21, 2025,
 - https://www.automate.org/news/ethical-considerations-in-the-development-and-deployment-of-robots-116
- 15. NOTE FOR NATIONAL DEFENCE: Artificial Intelligence: Ethical ..., accessed September 21, 2025, https://www.concordia.ca/content/dam/ginacody/research/spnet/Documents/BriefingNotes/AI/BN-96-The-role-of-AI-Nov2021.pdf
- 16. 5 Ethical Issues in Technology to Watch for in 2025 GTIA, accessed September 21, 2025, https://gtia.org/blog/ethical-issues-in-technology
- 17. Data Ethics: Examples, Principles and Uses | UNSW Online, accessed September 21, 2025, https://studyonline.unsw.edu.au/blog/data-ethics-overview
- 18. 5 Principles of Data Ethics for Business Harvard Business School Online, accessed September 21, 2025, https://online.hbs.edu/blog/post/data-ethics
- 19. Ethical Dilemmas and Privacy Issues in Emerging Technologies: A Review MDPI, accessed September 21, 2025, https://www.mdpi.com/1424-8220/23/3/1151
- 20. Privacy Laws & Ethical Tech Practices: A Modern Business Imperative, accessed September 21, 2025, https://www.neumetric.com/privacy-laws-ethical-tech-practices/
- 21. Privacy and the Law Markkula Center for Applied Ethics, accessed September 21, 2025, https://www.scu.edu/ethics/focus-areas/internet-ethics/resources/privacy-and-the-law/
- 22. DATA, ETHICS AND THE GDPR Risk & Compliance, accessed September 21, 2025, https://riskandcompliancemagazine.com/data-ethics-and-the-gdpr
- 23. GDPR and Research Ethics | School of History, Anthropology, Philosophy and Politics | Queen's University Belfast, accessed September 21, 2025, https://www.qub.ac.uk/schools/happ/subject-area/history/research/ethics/GDPRandResearchEthics/
- 24. Facebook–Cambridge Analytica data scandal Wikipedia, accessed September 21, 2025, https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge Analytica_data_sc_andal
- 25. The Cambridge Analytica affair and Internet-mediated research PMC, accessed September 21, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC6073073/
- 26. Deepfakes and the crisis of digital authenticity: ethical challenges in the age of synthetic media Emerald Insight, accessed September 21, 2025, https://www.emerald.com/jices/article/doi/10.1108/JICES-04-2025-0083/1271845/
 Deepfakes-and-the-crisis-of-digital-authenticity
- 27. Preventing the Spread of Misinformation & Disinformation Radio ..., accessed September 21, 2025, https://www.rtdna.org/preventing-the-spread-of-misinformation-and-disinformation

- 28. Misinformation and disinformation, accessed September 21, 2025, https://www.apa.org/topics/journalism-facts/misinformation-disinformation
- 29. Ethical Boundaries of Deepfake Technology in 2025 AiPrise, accessed September 21, 2025, https://www.aiprise.com/blog/deepfake-technology-ethical-implications
- 30. The ethics and legality of content moderation on social media ..., accessed September 21, 2025, https://steelefortress.com/fortress-feed/the-ethics-and-legality-of-content-moderation-on-social-media-platforms
- 31. Howard | The Ethics of Social Media: Why Content Moderation is a ..., accessed September 21, 2025, https://journals.publishing.umich.edu/jpe/article/id/6195/
- 32. Social media's impact on our mental health and tips to use it safely ..., accessed September 21, 2025, https://health.ucdavis.edu/blog/cultivating-health/social-medias-impact-our-mental-health-and-tips-to-use-it-safely/2024/05
- 33. How Social Media Affects Mental Health McLean Hospital, accessed September 21, 2025, https://www.mcleanhospital.org/essential/social-media
- 34. Who is liable when a self-driving car kills someone? Lancaster ..., accessed September 21, 2025, https://www.lancaster.ac.uk/richardson-institute/blogs/who-is-liable-when-a-self-driving-car-kills-someone
- 35. Ethical and Societal Implications of Advanced Automation and Robotics, accessed September 21, 2025, https://www.automate.org/news/ethical-and-societal-implications-of-advanced-automation-and-robotics
- 36. Moral Machine, accessed September 21, 2025, https://www.moralmachine.net/
- 37. The morality of the machine, accessed September 21, 2025, https://www.oeaw.ac.at/en/news/die-moral-der-maschine
- 38. Overview < Moral Machine MIT Media Lab, accessed September 21, 2025, https://www.media.mit.edu/projects/moral-machine/overview/
- 39. MIT Open Access Articles The Moral Machine experiment, accessed September 21, 2025, https://dspace.mit.edu/bitstream/handle/1721.1/125065/Moral%20Machine%20Paper.pdf
- 40. Moral Machine Wikipedia, accessed September 21, 2025, https://en.wikipedia.org/wiki/Moral Machine

ulation/

- 41. The Ethical Significance of Brain-Computer Interfaces as Enablers of ..., accessed September 21, 2025, https://journals.library.columbia.edu/index.php/bioethics/article/view/14149
- 42. Ethics of neurotechnology UNESCO, accessed September 21, 2025,
 - https://www.unesco.org/en/ethics-neurotech
- 43. Global Approaches to Artificial Intelligence Regulation The Henry ..., accessed September 21, 2025, https://jsis.washington.edu/news/global-approaches-to-artificial-intelligence-regulation

- 44. Global AI Law and Policy Tracker IAPP, accessed September 21, 2025, https://iapp.org/resources/article/global-ai-legislation-tracker/
- 45. The EU and U.S. diverge on AI regulation: A transatlantic comparison and steps to alignment, accessed September 21, 2025, https://www.brookings.edu/articles/the-eu-and-us-diverge-on-ai-regulation-a-transatlantic-comparison-and-steps-to-alignment/
- 46. China's Al Governance Initiative and Its Geopolitical Ambitions ..., accessed September 21, 2025, https://www.cigionline.org/articles/chinas-ai-governance-initiative-and-its-geopolitical-ambitions/
- 47. China's AI Regulations and How They Get Made, accessed September 21, 2025, https://carnegieendowment.org/research/2023/07/chinas-ai-regulations-and-how-they-get-made?lang=en
- 48. Implementing Ethical AI Frameworks in Industry University of San Diego Online Degrees, accessed September 21, 2025, https://onlinedegrees.sandiego.edu/ethics-in-ai/
- 49. ACM Code of Ethics (Ethics) Vocab, Definition, Explanations | Fiveable, accessed September 21, 2025, https://library.fiveable.me/key-terms/ethics/acm-code-of-ethics
- 50. ACM Code of Ethics and Professional Conduct, accessed September 21, 2025, https://www.acm.org/code-of-ethics
- 51. UNESCO Recommendation on the ethics of artificial intelligence | Digital Watch Observatory, accessed September 21, 2025, https://dig.watch/resource/unesco-recommendation-on-the-ethics-of-artificial-intelligence
- 52. Ethics of Artificial Intelligence | UNESCO, accessed September 21, 2025, https://www.unesco.org/en/artificial-intelligence/recommendation-ethics